Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This research presents an enhanced Graph Attention Convolutional Neural Network (GAT) tailored for the analysis of open-source package vulnerability remediation. By meticulously examining control flow graphs and implementing node centrality metrics—specifically, degree, norm, and closeness centrality—our methodology identifies and evaluates changes resulting from vulnerability fixes in nodes, thereby predicting the ramifications of dependency upgrades on application workflows. Empirical testing on diverse datasets reveals that our model challenges established paradigms in software security, showcasing its efficacy in delivering comprehensive insights into code vulnerabilities and contributing to advancements in cybersecurity practices. This study delineates a strategic framework for the development of sustainable monitoring systems and the effective remediation of vulnerabilities in open-source software.more » « lessFree, publicly-accessible full text available August 14, 2026
-
Counting and listing triangles in graphs is a fundamental task in network analysis, supporting applications such as community detection, clustering coefficient computation, k-truss decomposition, and triangle centrality. We introduce the cover-edge set, a novel concept that eliminates unnecessary edges during triangle enumeration, thereby improving efficiency. This compact cover-edge set is rapidly constructed using a breadth-first search (BFS) strategy. Using this concept, we develop both sequential and parallel triangle-counting algorithms and conduct comprehensive comparisons with state-of-the-art methods. We also design a benchmarking framework to evaluate our sequential and parallel algorithms in a systematic and reproducible manner. Extensive experiments on the latest Intel Xeon 8480+ processor reveal clear performance differences among algorithms, demonstrate the benefits of various optimization strategies, and show how graph characteristics, such as diameter and degree distribution, affect algorithm performance. Our source code is available on GitHub.more » « lessFree, publicly-accessible full text available November 1, 2026
-
This research presents an enhanced Graph Attention Convolutional Neural Network (GAT) tailored for the analysis of open-source package vulnerability remediation. By meticulously examining control flow graphs and implementing node centrality metrics—specifically, degree, norm, and closeness centrality—our methodology identifies and evaluates changes resulting from vulnerability fixes in nodes, thereby predicting the ramifications of dependency upgrades on application workflows. Empirical testing on diverse datasets reveals that our model challenges established paradigms in software security, showcasing its efficacy in delivering comprehensive insights into code vulnerabilities and contributing to advancements in cybersecurity practices. This study delineates a strategic framework for the development of sustainable monitoring systems and the effective remediation of vulnerabilities in open-source software.more » « less
-
This paper introduces a novel, parallel, and scalable implementation of the VF2 algorithm for subgraph monomorphism developed in the high-productivity language Chapel. Efficient graph analysis in large and complex network datasets is crucial across numerous scientific domains. We address this need through our enhanced VF2 implementation, widely utilized in subgraph matching, and integrating it into Arachne—a Python-accessible, open-source, large-scale graph analysis framework. Leveraging the parallel computing capabilities of modern hardware architectures, our implementation achieves significant performance improvements. Benchmarks on synthetic and real-world datasets, including social, communication, and neuroscience networks, demonstrate speedups of up to 97X on 128 cores, compared to existing Python-based tools like NetworkX and DotMotif, which do not exploit parallelization. Our results on large-scale graphs demonstrate scalability and efficiency, establishing it as a viable tool for subgraph monomorphism, the backbone of numerous graph analytics such as motif counting and enumeration. Arachne, including our VF2 implementation, can be found on GitHub: https://github.com/Bears-R-Us/arkouda-njit.more » « less
An official website of the United States government

Full Text Available